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1 Introduction

In this chapter a first attempt will be made to examine how the coupling
of multimedia processing and knowledge representation techniques, presented
separately in previous chapters, can improve analysis. No formal reasoning
techniques will be introduced at this stage; our exploration of how multime-
dia analysis and knowledge can be combined will start by revisiting the image
and video segmentation problem. Semantic segmentation, presented in the
first section of this chapter, starts with an elementary segmentation and re-
gion classification and refines it using similarity measures and merging criteria
defined at the semantic level. Our discussion will continue in the next sections
of the chapter with knowledge-driven classification approaches, which exploit
knowledge in the form of contextual information for refining elementary clas-
sification results obtained via machine learning. Two relevant approaches will
be presented. The first one deals with visual context and treats it as inter-
action between global classification and local region labels. The second one
deals with spatial context and formulates the exploitation of it as a global
optimization problem. All approaches presented in this chapter are geared
towards the “Photo Use Case” scenario defined in Chapter 2, although their
use as part of a semi-automatic annotation process in a Professional Media
Production and Archiving setting is also feasible.
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2 Related Work

Starting from an initial image segmentation and the classification of each re-
sulting segment in one of a number of possible semantic categories, using one
of the various segmentation algorithms of the literature and one or more of
the classifiers discussed in Chapter 5, there are two broad categories of pos-
sible analysis errors that one may encounter: segmentation errors and clas-
sifications errors. Segmentation errors occur as either under-segmentation or
over-segmentation; in both cases, the result is the formation of one or more
spatial regions, each of which does not accurately correspond to a single se-
mantic object depicted in the image. Classification errors, on the other hand,
occur as a result of the insufficiency of the employed combination of classifica-
tion technique and feature vector to effectively distinguish between different
classes of objects. Clearly, these two categories of analysis errors are not inde-
pendent of each other: a segmentation error such as the formation of regions
that correspond to only a small part of a semantic object, for example, can
clearly render useless any employed shape features and thus lead to erroneous
classification; there are several similar examples of how segmentation affects
classification performance.

In order to minimize the number of segmentation errors, several elaborate
image segmentation methods have appeared in the relevant literature. Some of
them focus on the use of a more complete set of visual cues for performing seg-
mentation, e.g. the combined use of color, texture and position features [14],
and the introduction of new algorithms for exploiting these features, while
others attempt to minimize segmentation errors by means of post-processing
procedures that perform region-merging or even region-splitting operations
upon an appropriately generated initial segmentation [1]. The introduction
of semantics-based criteria in the approaches of the latter category is an in-
teresting idea that can contribute towards better segmentation; a method for
this is presented in the sequel. A comprehensive review of image segmentation
methods not exploiting semantic information is nevertheless beyond the scope
of this chapter; the interested reader is referred to [15] for a review on this
topic.

To allow for the more reliable classification of the generated regions, on
the other hand, and in particular to address the insufficiency of a given combi-
nation of classification technique and feature vector to effectively distinguish
between different classes of objects, the use of contextual information has been
proposed. Contextual information, for the purpose of semantic image analy-
sis, can refer to spatial information, concept co-occurrence information and
other kinds of prior knowledge that can contribute to the disambiguation of
the semantics of a spatial region based on the semantics of its peers [12].

Spatial information in particular has been shown to be very suitable for
discriminating between objects exhibiting similar visual characteristics, since
it is generally observed that objects tend to be present in a scene within a par-
ticular spatial context [21]. To this end, several approaches have been proposed
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in the relevant literature that utilize spatial information in order to overcome
the ambiguities and limitations that are inherent in the visual medium. In
[9], Hollink et al. discusses the issue of semi-automatically adding spatial in-
formation to image annotations. Among the most commonly adopted spatial
context representations, directional spatial relations have received particular
interest. They are used to denote the relative position of objects in space and
their capability in facilitating semantic image analysis tasks has been high-
lighted. The relevant literature considers roughly of two categories for the
latter: angle-based and projection-based approaches. Angle-based approaches
include [26], where a pair of fuzzy k-NN classifiers are trained to differenti-
ate between the Above/Below and Left/Right relations and the work of [16],
where an individual fuzzy membership function is defined for every relation
and applied directly to the estimated angle-histogram. Projection-based ap-
proaches include [9], where qualitative directional relations in terms of the
center and the sides of the corresponding objects’ Minimum Bounding Rect-
angles (MBRs) were defined.

3 Semantic Image Segmentation

3.1 Graph Representation of an Image

An image can be described as a structured set of individual objects, allowing
thus a straightforward mapping to a graph structure. In this fashion, many
image analysis problems can be considered as graph theory problems, inher-
iting the solid theoretical grounds of the latter. Attributed Relation Graph
(ARG) [6] is a type of graph often used in computer vision and image analysis
for the representation of structured objects.

Formally, an ARG is defined by spatial entities represented as a set of
vertices V and binary spatial relationships represented as a set of edges E:
ARG ≡ 〈V, E〉. Letting G be the set of all connected, non-overlapping re-
gions/segments of an image, then a region a ∈ G of the image is represented
in the graph by vertex va ∈ V , where va ≡ 〈a,Da, La〉. Da is the ordered
set of MPEG-7 Visual Descriptors characterizing the region in terms of low-
level features, while La =

∑|C|
i=1 ci/µa(ci) is the fuzzy set of candidate labels

for the region, extracted in a process described in the following section. The
adjacency relation between two neighbor regions a, b ∈ G of the image is rep-
resented by graph’s edge eab = 〈(va, vb), sab〉 ∈ E. sab is a similarity value
for the two adjacent regions represented by the pair (va, vb). This value is
calculated based on the semantic similarity of the two regions as described by
the two fuzzy sets La and Lb:

sab = sup
c∈C

(tnorm(µa(c), µb(c))), a, b ∈ G (1)

The above formula states that the similarity of two regions is the supre-
mum (sup) over all common concepts of the fuzzy intersection (tnorm) of the
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Fig. 1. Initial region labeling based on ARG and Visual Descriptors matching.

degrees of membership µa(c) and µb(c) for the specific concept of the two
regions a and b.

Finally, we consider two regions a, b ∈ G to be connected when at least
one pixel of one region is 4-connected to one pixel of the other. In an ARG, a
neighborhood Na of a vertex va ∈ V is the set of vertices whose corresponding
regions are connected to a: Na = {vb : eab 6= ∅}, a, b ∈ G. It is rather obvious
now that the subset of ARG’s edges that are incident to region a can be
defined as: Ea = {eab : b ∈ Na} ⊆ E.

In the following section we shall focus on the use of the ARG model and
provide the guidelines for the fundamental initial region labeling of an image.

3.2 Image Graph Initialization

Our intention within this work is to operate on a semantic level where regions
are linked to possible labels rather than only to their visual features. As a
result, the above described ARG is used to store both the low level and the
semantic information in a region-based fashion. Two MPEG-7 Visual Descrip-
tors, namely Dominant Color (DC) and Homogeneous Texture (HT) [13], are
used to represent each region in the low level feature-space, while fuzzy sets
of candidate concepts are used to model high level information. For this pur-
pose a knowledge assisted analysis algorithm, discussed in depth in [4], has
been designed and implemented. The general architecture scheme is depicted
in Fig. 1, where in the center lies the ARG, interacting with the rest of the
processes.

The ARG is constructed based on an initial RSST-like segmentation [1]
that produces a few tens of regions (approximately 30-40 in our experiments).
For every region Dominant Color (DC) and Homogeneous Texture (HT ) are
extracted (i.e. for region a: Da = [DCaHTa]) and stored in the corresponding
graph’s vertex. The formal definition of DC [13] is DC ≡ [{ci, vi, pi}, s] , i =
1..N , where ci is the ith dominant color, vi the color’s variance, pi the color’s
percentage value, s the spatial coherency and N can be up to eight. The
distance function for two descriptors DC1, DC2 is:
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dDC(DC1, DC2) =

√√√√
N1∑

i=1

p2
1i +

N2∑

j=1

p2
2j −

N1∑

i=1

N2∑

j=1

2a1i,2jp1ip2j (2)

where a1i,2j is a similarity coefficient between two colors. Similarly for HT we
have HT ≡ [avg, std, e1, .., e30, d1, .., d30], where avg is the average intensity of
the region, std is the standard deviation of the region’s intensity, ei and di are
the energy and the deviation for thirty (i ∈ [1, . . . , 30]) frequency channels. A
distance function is also defined:

dHT (HT1,HT2) =
NHT =62∑

i=1

∣∣∣∣
HT1(i)−HT2(i)

σi

∣∣∣∣ (3)

where σi is a normalization value for each frequency channel. For the sake
of simplicity and readability, we will use the following two distance notations
equivalently: dDC(DCa, DCb) ≡ dDC(a, b) (similarly for dHT ). This is also
justified as we do not deal with abstract vectors but with image regions a and
b represented by their visual descriptors.

Region labeling is based on a matching process between the visual descrip-
tors stored in each vertex of the ARG and the corresponding visual descriptors
of all concepts c ∈ C, stored in the form of prototype instances P (c) in the
ontological knowledge base. Matching of a region a ∈ G with a prototype
instance p ∈ P (c) of a concept c ∈ C is done by combining the individual
distances of the two descriptors:

d(a, p) = d([DCaHTa], [DCpHTp])
= wDC(c) · nDC(dDC(a, p)) + wHT (c) · nHT (dHT (a, p)) (4)

where dDC and dHT are given in equations (2) and (3), wDC and wHT are
weights depending on each concept c and wDC(c) + wHT (c) = 1,∀c ∈ C.
Additionally, nDC and nHT are normalization functions and more specifically
were selected to be linear:

n(x) =
x− dmin

dmax − dmin
,n : [dmindmax] → [01] (5)

where dmin and dmax are the minimum and maximum of the two distance
functions dDC and dHT , respectively.

After exhaustive matching between regions and all prototype instances,
the last step of the algorithm is to populate the fuzzy set La for all graph’s
vertices. The degree of membership of each concept c in the fuzzy set La is
calculated as follows:

µa(c) = 1− min
p∈P (c)

d(a, p) (6)

where d(a, p) is given in (4). This process results to an initial fuzzy labeling
of all regions with concepts from the knowledge base, or more formally to a



6 Authors Suppressed Due to Excessive Length

set L = {La}, a ∈ G whose elements are the fuzzy sets of all regions in the
image.

This is obviously not a simple task and its efficiency depends highly on the
domain where it is applied, as well as on the quality of the knowledge base.
Main limitations of this approach are the dependency on the initial segmen-
tation and the creation of representative prototype instances of the concepts.
The latter is easier to be managed, whereas we deal with the former in this
chapter suggesting an extension based on region merging and segmentation
on a semantic level.

3.3 Semantic Region Growing

Overview

The major target of this work is to improve both image segmentation and
labeling of materials and simple objects at the same time, with obvious ben-
efits for problems in the area of image understanding. As mentioned in the
introduction, the novelty of the proposed idea lies on blending well established
segmentation techniques with mid-level features, like the fuzzy sets of labels
we defined earlier in section 3.1.

In order to emphasize that this approach is independent of the selection of
the segmentation algorithm, we examine two traditional segmentation tech-
niques, belonging in the general category of region growing algorithms. The
first is the watershed segmentation [7], while the second is the Recursive Short-
est Spanning tree, also known as RSST [19]. We modify these techniques to
operate on the fuzzy sets stored in the ARG in a similar way as if they worked
on low-level features (such as color, texture, etc.). Both variations follow in
principles the algorithmic definition of their traditional counterparts, though
several adjustments were considered necessary and were added. We call this
overall approach Semantic Region Growing (SRG).

Semantic Watershed

The watershed algorithm [7] owes its name to the way in which regions are
segmented into catchment basins. A catchment basin is the set of points that
is the local minimum of a height function (most often the gradient magnitude
of the image). After locating these minima, the surrounding regions are incre-
mentally flooded and the places where flood regions touch are the boundaries
of the regions. Unfortunately, this strategy leads to oversegmentation of the
image; therefore a marker controlled segmentation approach is usually ap-
plied. Markers constrain the flooding process only inside their own catchment
basin; hence the final number of regions is equal to the number of markers.

In our semantic approach of watershed segmentation, called semantic wa-
tershed, certain regions play the role of markers/seeds. During the construc-
tion of the ARG, every region a ∈ G has been linked to a graph vertex va ∈ V
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that contains a fuzzy set of labels La. A subset of all regions G are selected
to be used as seeds for the initialization of the semantic watershed algorithm
and form an initial set S ⊆ G. The criteria for selecting a region s ∈ S to be
a seed are the following two:

1. The height of its fuzzy set La (the largest degree of membership obtained
by any element of La [11]) should be above a threshold: h(La) > Tseed.
Threshold Tseed is different for every image and its value depends on the
distribution of all degrees of membership over all regions of the particular
image. The value of Tseed discriminates the top p percent of all degrees
and this percentage p (calculated only once) is the optimal value derived
from a training set of images.

2. The specific region has only one dominant concept, i.e. the remaining
concepts should have low degrees of membership comparatively to that of
the dominant concept:

h(La) >
∑

c∈{C−c∗}
µa(c), wherec∗ : µa(c∗) = h(La) (7)

These two constrains ensure that the specific region has been correctly
selected as seed for the particular concept c∗.

An iterative process begins checking every initial region-seed, s ∈ S, for
all its direct neighbors Ns. Let r ∈ Ns a neighbor region of s, or in other
words, s is the propagator region of r: s = p(r). We compare the fuzzy sets
of those two regions Lp(r), Lr element by element and for every concept in
common we measure the degree of membership of region r, for the particular
concept c, µr(c) . If it is above a merging threshold µr(c) > Kn ·Tmerge, then
it is assumed that region r is semantically similar to its propagator and was
incorrectly segmented and therefore we merge those two. Parameter K is a
constant slightly above one, which increases the threshold in every iteration n
of the algorithm in a non-linear way to the distance from the initial regions-
seeds. Additionally region r is added in a new set of regions Mn

s (n denotes
the iteration step, with M0

s ≡ s, M1
s ≡ Ns, etc.), from which the new seeds

will be selected for the next iteration of the algorithm. After merging, the
algorithm re-evaluates the degrees of membership of all concepts of Lr:

µr̂(c) = min(µp(r)(c), µr(c)) (8)

where p(r) is the propagator region of r.
The above procedure is repeated until the termination criterion of the

algorithm is met, i.e. all sets of regions-seeds in step n are empty: Mn
s = ∅. At

this point, we should underline that when neighbors of a region are examined,
previous accessed regions are excluded, i.e. each region is reached only once
and that is by the closest region-seed, as defined in the ARG.

After running this algorithm onto an image, some regions will be merged
with one of the seeds, while other will stay unaffected. In order to deal with
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these regions as well, we repeatedly run our algorithm on new ARGs; each
one of the latter consists of the specific regions that remained intact after all
previous iterations. This hierarchical strategy needs no additional parameters,
since every time new regions-seeds will be created automatically based on a
new threshold Tseed (apparently with smaller value than before). Obviously,
the regions created in the first pass of the algorithm have stronger confidence
for their boundaries and their assigned concept than those created in a later
pass. This is not a drawback of the algorithm; quite on the contrary, we
consider this fuzzy outcome to be actually an advantage as we maintain all
the available information.

Semantic RSST

Traditional RSST [19] is a bottom-up segmentation algorithm that begins
from the pixel level and iteratively merges similar neighbor regions until cer-
tain termination criteria are satisfied. RSST is using internally a graph rep-
resentation of image regions, like the ARG described in section 3.1. In the
beginning, all edges of the graph are sorted according to a criterion, e.g. color
dissimilarity of the two connected regions using Euclidean distance of the
color components. The edge with the least weight is found and the two re-
gions connected by that edge are merged. After each step, the merged region’s
attributes (e.g. region’s mean color) is re-calculated. Traditional RSST will
also re-calculate weights of related edges as well and resort them, so that in
every step the edge with the least weight will be selected. This process goes
on recursively until termination criteria are met. Such criteria may vary, but
usually these are either the number of regions or a threshold on the distance.

Following the conventions and notation used so far, we introduce here a
modified version of RSST, called Semantic RSST. In contrast to the approach
described in the previous Section, in this case no initial seeds are necessary,
but instead of this we need to define (dis)similarity and termination criteria.
The criterion for ordering the edges is based on the similarity measure defined
earlier in section 3.1. For an edge eab between two adjacent regions a and b
we define its weight as follows:

w(eab) = 1− sab (9)

Equation (9) can be expanded by substituting sab from equation (1). We
considered that an edge’s weight should represent the degree of dissimilarity
between the two joined regions; therefore we subtract the estimated value
from one. Commutativity and associativity axioms of all fuzzy set operations
(thus including default fuzzy union and default fuzzy intersection) ensure that
the ordering of the arguments is indifferent. In this way all graph’s edges are
sorted by their weight.

Let us now examine in details one iteration of the semantic RSST algo-
rithm. Firstly, the edge with the least weight is selected as: e∗ab = arg mineab∈E (w(eab)).
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(a) (b) (c) (d)

Fig. 2. Experimental results for an image from the beach domain. (a) Input image,
(b) RSST segmentation, (c) semantic watershed, (d) semantic RSST.

Then regions a and b are merged to form a new region â. Region b is removed
completely from the ARG, whereas a is updated appropriately. This update
procedure consists of the following two actions:

1. Update of the fuzzy set La by re-evaluating all degrees of membership in
a weighted average fashion:

µâ(c) =
A(a) · µa(c) + A(b) · µb(c)

A(a) + A(b)
, ∀c ∈ C (10)

The quantity A(a) is a measure of the size (area) of region a and is the
number of pixels belonging to this region.

2. Re-adjustment of the ARG’s edges:
a) Removal of edge eab.
b) Re-evaluation of the weight of all affected edges e: the union of those

incident to region a and of those incident to region b: e ∈ Ea

⋃
Eb.

This procedure continues until the edge e∗ with the least weight in the
ARG is above a threshold: w(e∗) > Tw. This threshold is calculated in the
beginning of the algorithm (similarly with the traditional RSST), based on
the cumulative histogram of the weights of all edges E.

Fig. 2 illustrates an example derived from the beach domain. In order
to make segmentation results comparable we pre-defined the final number of
regions produced by traditional RSST to be equal to that produced by the
semantic watershed. An obvious observation is that RSST segmentation per-
formance in Fig. 2b is rather poor; persons are merged with sand, whereas
sea on the left and in the middle under the big cliff is divided into several
regions and adjacent regions of the same cliff are classified as different ones.
The results of the application of the semantic watershed algorithm are shown
in Fig. 2c and are considerably better. More specifically, we observe that both
parts of sea are merged together, and the rocks on the right side are repre-
sented by only two large regions, despite their original variations in texture
and color information. Moreover, the persons lying on the sand are identified
as separate regions. Semantic RSST (Fig. 2d) is shown to perform similarly
well.



10 Authors Suppressed Due to Excessive Length

4 Using Contextual Knowledge to Aid Visual Analysis

4.1 Contextual Knowledge Formulation

Ontologies [22] present a number of advantages over other knowledge rep-
resentation strategies. In the context of this work, ontologies are suitable for
expressing multimedia content semantics in a formal machine-processable rep-
resentation that allows manual or automatic analysis and further processing
of the extracted semantic descriptions. As an ontology is a formal specifica-
tion of a shared understanding of a domain, this formal specification is usually
carried out using a subclass hierarchy with relationships among the classes,
where one can define complex class descriptions (e.g. in DL [5] or OWL [25]).
One possible way to describe ontologies can be formalized as:

O = {C, {Rpq}}, where Rpq : C × C → {0, 1} (11)

where O is an ontology, C is the set of concepts described by the ontology,
p and q are two concepts p, q ∈ C and, Rpq is the semantic relation amongst
these concepts. The above knowledge model encapsulates a set of concepts
and the relations between them, forming the basic elements toward semantic
interpretation. In general, semantic relations describe specific kinds of links
or relationships between any two concepts. In the crisp (non-fuzzy) case, a
semantic relation either relates (Rpq = 1) or does not relate (Rpq = 0) a pair
of concepts p, q with each other. Although almost any type of relation may be
included to construct such knowledge representation, the two categories com-
monly used are taxonomic (i.e. ordering) and compatibility (i.e. symmetric)
relations. However, as extensively discussed in [2], compatibility relations fail
to assist in the determination of the context and the use of ordering relations
is necessary for such tasks. Thus, the first challenge is to meaningfully use in-
formation from the taxonomic relations to exploit context for semantic image
segmentation and object labeling.

For a knowledge model to be highly descriptive, it must contain many
distinct and diverse relations among its concepts. A side-effect of using many
diverse relations is that available information will then be scattered across
them, making any individual relation inadequate for describing context in
a meaningful way. Consequently, relations need to be combined to provide
a view of the knowledge that suffices for context definition and estimation.
In this work we use three types of relations, whose semantics are defined in
the MPEG-7 standard [10], namely the specialization relation Sp, the part of
relation P and the property relation Pr.

One more important point must be considered when designing a knowledge
model: real-life data is often considerably different from research data. Real-
life information is, in principal, governed by uncertainty and fuzziness. It can
therefore be more accurately modelled using fuzzy relations. The commonly
encountered crisp relations above can be modeled as fuzzy ordering relations,
and can be combined to generate a meaningful fuzzy taxonomic relation. To
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tackle such complex types of relations we propose a “fuzzification” of the
previous ontology definition:

OF = {C, {rpq}},where rpq = F (Rpq) : C × C → [0, 1] (12)

where OF defines a fuzzy ontology, C is again the set of all possible con-
cepts it describes and rpq denotes a fuzzy relation amongst the two concepts
p, q ∈ C. In the fuzzy case, a fuzzy semantic relation relates a pair of concepts
p, q with each other to a given degree of membership, i.e. the value of rpq lies
within the [0, 1] interval. More specifically, given a universe U , a crisp set C
is described by a membership function µC : U → {0, 1} (as already observed
in the crisp case for Rpq), whereas according to [11], a fuzzy set F on C is
described by a membership function µF : C → [0, 1]. We may describe the
fuzzy set F using the widely applied sum notation [18]:

F =
n∑

i=1

ci/wi = {c1/w1, c2/w2, . . . , cn/wn}

where n = |C| is the cardinality of set C and concept ci ∈ C. The membership
degree wi describes the membership function µF (ci), i.e. wi = µF (ci), or for
the sake of simplicity, wi = F (ci). As in [11], a fuzzy relation on C is a function
rpq : C × C → [0, 1] and its inverse relation is defined as r−1

pq = rqp. Based
on the relations rpq and for the purposes of image analysis here, we construct
a relation T using the transitive closure of the fuzzy taxonomic relations:
Specialization Sp, Part of P and Property Pr:

T = Trt(Sp ∪ P−1 ∪ Pr−1) (13)

In these relations, fuzziness has the following meaning: High values of
Sp(p, q) imply that the meaning of q approaches the meaning of p, in the
sense that when an image is semantically related to q, then it is likely related
to p as well. On the other hand, as Sp(p, q) decreases, the meaning of q
becomes “narrower” than the meaning of p, in the sense that an image’s
relation to q will not imply a relation to p as well with a high probability,
or to a high degree. Likewise, the degrees of the other two relations can also
be interpreted as conditional probabilities or degrees of implied relevance.
MPEG-7 MDS [10] contains several types of semantic relations meaningful
to multimedia analysis, defined together with their inverses. Sometimes, the
semantic interpretation of a relation is not meaningful whereas the inverse
is. In our case, the relation part P (p, q) is defined as: p part q if and only
if q is part of p. For example, let p be New York and q Manhattan. It is
obvious that the inverse relation part of P−1 is semantically meaningful, since
Manhattan is part of New York. There is, similarly, a meaningful inverse for
the property relation Pr. On the other hand, following the definition of the
specialization relation Sp(p, q), p is specialization of q if and only if q is a
specialization in meaning of p. For example, let p be mammal and q dog;
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Sp(p, q) means that dog is a specialization of a mammal, which is exactly the
semantic interpretation we wish to use (and not its inverse). Based on these
roles and semantic interpretations of Sp, P and Pr, it is easy to see that
(13) combines them in a straightforward and meaningful way, utilizing inverse
functionality where it is semantically appropriate, i.e. where the meaning of
one relation is semantically contradictory to the meaning of the rest on the
same set of concepts. The transitive closure Trt is required in order for T to
be taxonomic, as the union of transitive relations is not necessarily transitive,
as discussed in [3].

Representation of our concept-centric contextual knowledge model follows
the Resource Description Framework (RDF) standard [23]. RDF is the frame-
work in which Semantic Web metadata statements are expressed and usually
represented as graphs. The RDF model is based upon the idea of making state-
ments about resources in the form of a subject-predicate-object expression.
Predicates are traits or aspects about a resource that express a relationship
between the subject and the object. The relation T can be visualized as a
graph, in which every node represents a concept and each edge constitutes
a contextual relation between these concepts. Additionally each edge has an
associated membership degree, which represents the fuzziness within the con-
text model. Representing the graph in RDF is straightforward, since RDF
structure itself is based on a similar graph model.

To represent fuzzy relations, we use reification [24]: a method for making
statements about other statements in RDF. In our model, the reified state-
ments capture the degree of membership for the relations. This method of
representing fuzziness a novel but acceptable way, since the reified statement
should not be asserted automatically. For instance, having a statement such
as: “Sky PartOf BeachScene” and a membership degree of 0.75 for this state-
ment does not imply that sky is always a part of a beach scene.

A small clarifying example is provided in Fig. 3 for an instance of the
specialization relation Sp. As discussed, Sp(x, y) > 0 implies that the meaning
of x “includes” the meaning of y; the most common forms of specialization
are sub-classing, i.e. x is a generalization of y, and thematic categorization,
i.e. x is the thematic category of y. In the example, the RDF subject wrc
(World Rally Championship) has specializationOf as an RDF predicate and
rally forms the RDF object. The reification process introduces a statement
about the specializationOf predicate, stating that the membership degree for
the relation is 0.90.

4.2 Contextual Relevance

The idea behind the use of visual context information responds to the fact
that not all human acts are relevant in all situations, and this also holds when
dealing with image analysis problems. Since visual context is a difficult notion
to grasp and capture [20], we restrict it herein to the notion of ontological
context, defined in terms of the fuzzy ontologies presented in subsection 4.1.
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<rdf:Description rdf:about="#s1">
<rdf:subject rdf:resource="&dom;wrc"/>
<rdf:predicate rdf:resource="&dom;specializationOf"/>
<rdf:object>rdf:resource="&dom;rally"</rdf:object>
<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/>
<context:specializationOfrdf:datatype="http://www.w3.org/2001/XMLSchema#float">
0.90</context:specializationOf>

</rdf:Description>

Fig. 3. Fuzzy relation representation: RDF reification.

Here the problems to be addressed include how to meaningfully re-adjust the
membership degrees of segmented (and possibly merged) image regions, and
how to use visual context to improve the performance of knowledge-assisted
image analysis. Based on the mathematical background introduced in the
previous subsections, we develop an algorithm used to re-adjust the degree
of membership µa(c) of each concept c in the fuzzy set La associated to a
region a ∈ G in a scene. Each concept k ∈ C in the application-domain’s
ontology is stored together with its relationship degrees rkl to every other
related concept l ∈ C. To tackle cases in which more than one concept is
related to multiple concepts, we use the term context relevance crdm(k), which
refers to the overall relevance of concept k to the root element characterizing
each domain dm. For instance the root element of beach and motorsports
domains are concepts beach and motorsports. All possible routes in the graph
are taken into consideration forming an exhaustive approach to the domain,
with respect to the fact that all routes between concepts are reciprocal.

An estimation of each concept’s value is derived from the direct and indi-
rect relationships between the concept and other concepts, using a compati-
bility indicator or distance metric. The ideal distance metric for two concepts
is one that quantifies their semantic correlation. Depending on the nature of
the domains under consideration, the best indicator could be either the max
or the min operator. For the problem at hand, beach and motorsports do-
mains, the max value is a meaningful measure of correlation for both. Fig. 4
presents a simple example. The concepts are: motorsports (the root element -
denoted as m), asphalt (a), grass (g) and car (c). Their relationships can be
summarised as follows: let concept a be related to concepts m, g and c directly
with: ram, rag and rac, while concept g is related to concept m with rgm and
concept c is related to concept m with rcm. Additionally, c is related to g with
rcg. The context relevance for concept a is given by:

crdm(a) = max{ram, ragrgm, racrcm, ragrcgrcm, racrcgrgm} (14)

The general structure of the degree of membership re-evaluation algorithm
is as follows:

1. Identify an optimal normalization parameter np to use within the algo-
rithm’s steps, according to the considered domain(s). The np is also re-
ferred to as domain similarity, or dissimilarity, measure and np ∈ [0, 1].



14 Authors Suppressed Due to Excessive Length

Fig. 4. Graph representation example - Compatibility indicator estimation.

2. For each concept k in the fuzzy set La associated to a region a ∈ G in a
scene with a degree of membership µa(k), obtain the contextual informa-
tion in the form of its relations to all other concepts: {rkl : l ∈ C, l 6= k}.

3. Calculate the new degree of membership µa(k) associated to region a,
based on np and the context’s relevance value. In the case of multiple
concept relations in the ontology, relating concept k to more than one con-
cepts, rather than relating k solely to the “root element” re, an interme-
diate aggregation step should be applied for k: crk = max{rkre , . . . , rkm}.
We express the calculation of µa(k) with the recursive formula:

µn
a(k) = µn−1

a (k)− np(µn−1
a (k)− crk) (15)

where n denotes the iteration used. Equivalently, for an arbitrary iteration
n:

µn
a(k) = (1− np)n · µ0

a(k) + (1− (1− np)n) · crk (16)

where µ0
a(k) represents the original degree of membership.

In practice, typical values for n reside between 3 and 5. Interpretation of
both equations (15) and (16) implies that the proposed contextual approach
will favor confident degrees of membership for a region’s concept over non-
confident or misleading degrees of membership. It amplifies their differences,
while diminishing confidence in clearly misleading concepts for each region.
Further, based on the supplied ontological knowledge, it will clarify and solve
ambiguities in cases of similar concepts or difficult-to-analyze regions.

The key step remaining is the definition of a meaningful normalization
parameter np. When re-evaluating the confidence values, the ideal np is al-
ways defined with respect to the particular domain of knowledge and is the
value that quantifies their semantic correlation to the domain. In our work we
conducted a series of experiments on a training set of 120 images for both the
beach and the motorsports application domains and selected the np value that
resulted in the best overall evaluation score values for each domain. The pro-
posed algorithm re-adjusts the initial degrees of membership, using semantics
in the form of the contextual information residing in the constructed fuzzy
ontology.
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Fig. 5. Contextual experimental results for a beach image.

Fig. 5 presents indicative results for a beach image. Contextualization,
which works on a per region basis, is applied after semantic region growing.
In this example we have selected the unified sea region in the upper left part
of the image (illustrated by an artificial blue color). The contextualized results
are presented in red in the right column at the bottom of the tool. Context
favors strongly the fact that the merged region belongs to sea, increasing its
degree of membership from 86.15% to 92.00%. The (irrelevant for this region)
membership degree for person is extinguished, whereas degrees of membership
for the rest of the possible beach concepts are slightly increased, due to the
ontological knowledge relations that exist in the knowledge model.

5 Spatial Context and Optimization

5.1 Introduction

In this section, a semantic image analysis approach based on the incorpora-
tion of spatial-related contextual information in the analysis process and the
formulation of the latter as a global optimization problem is presented. In
particular, the examined image is spatially segmented and Support Vector
Machines (SVMs) are subsequently employed for performing an initial asso-
ciation of every image region with a set of pre-defined high-level semantic
concepts based solely on visual information. Then, a Genetic Algorithm (GA)
is introduced for estimating a globally optimal region-concept assignment,
taking into account the spatial context. Representation of the latter relies on
fuzzy directional relations extraction.
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5.2 Low-Level Visual Information Processing

Segmentation and Features Extraction

In order to perform the initial region-concept association procedure, the ex-
amined image has to be segmented into regions and suitable low-level descrip-
tions have to be extracted for every resulting segment. In the current im-
plementation, an extension of the Recursive Shortest Spanning Tree (RSST)
algorithm has been used for segmenting the image. Output of this segmen-
tation algorithm is a segmentation mask, where the created spatial regions
sn, n = 1, ...N, are likely to represent meaningful semantic objects. For ev-
ery generated image segment the following MPEG-7 descriptors, discussed
in Chapter 4, are extracted and form a region feature vector: Scalable Color,
Homogeneous Texture, Region Shape and Edge Histogram.

Fuzzy Spatial Relations Extraction

In the present analysis framework, eight fuzzy directional relations are sup-
ported, namely North (N), East (E), South (S), West (W), South-East (SE),
South-West (SW), North-East (NE) and North-West (NW). Their extraction
builds on the principles of projection- and angle- based methodologies and
consists of the following steps. First, a reduced box is computed from the
ground region’s (the region used as reference and is painted in dark grey in
Fig. 6) MBR, so as to include the region in a more representative way. The
computation of this reduced box is performed in terms of the MBR compact-
ness value v, which is defined as the fraction of the region’s area to the area
of the respective MBR: If the initially computed v is below a threshold T, the
ground region’s MBR is reduced repeatedly until the desired threshold is sat-
isfied. Then, eight cone-shaped regions are formed on top of this reduced box,
as illustrated in Fig. 6, each corresponding to one of the defined directional
relations. The percentage of the figure region (whose relative position is to
be estimated and is painted in light grey in Fig. 6) points that are included
in each of the cone-shaped regions determines the degree to which the cor-
responding directional relation is satisfied. After extensive experimentations,
the value of the threshold T was set equal to 0.85.

5.3 Initial Region-Concept Association

SVMs, which were discussed in Chapter 5, have been widely used in semantic
image analysis tasks due to their reported generalization ability [21]. Under
the proposed approach, SVMs are employed for performing an initial associa-
tion of the computed image regions to one of the defined high-level semantic
concepts based on the estimated region feature vector. An individual SVM is
introduced for every defined concept cl, l = 1, ...L, to detect the corresponding
instances, and is trained under the ‘one-against-all’ approach. Each SVM at
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Fig. 6. Fuzzy directional relations definition

the evaluation stage returns for every segment a numerical value in the range
[0, 1] denoting the degree of confidence, hC

nl, to which the corresponding region
is assigned to the concept associated with the particular SVM. The degree of
confidence is calculated according to the following equation:

hC
nl =

1
1 + e−p·znl

, (17)

where znl is the distance of the input feature vector from the correspond-
ing SVM’s separating hyperplane and p is a slope parameter set experimen-
tally. For every region, argmax(hC

nl) indicates its concept assignment, whereas
HC

n = {hC
nl, l = 1, ...L} constitutes its concept hypothesis set. It must be

noted that any other classification algorithm can be adopted during this step,
provided that a similar hypothesis set is estimated for every image region.

5.4 Final Region-Concept Association

Spatial Constraints Estimation

In this section, the procedure followed for estimating the values of the spa-
tial relations (spatial-related contextual information) between all the defined
high-level semantic concepts, as opposed to concepts themselves that are em-
pirically determined, is described. Specifically, the aforementioned values are
calculated according to the following learning approach:

Let R,

R = {rk, k = 1, ..., K} = { N, NW, NE, S, SW, SE, W, E}, (18)

denote the set of the supported spatial relations. Then, the degree to which
region si satisfies relation rk with respect to region sj can be denoted as
Irk

(si, sj) and is estimated according to the procedure of Section 5.2. In order
to acquire the contextual information, this function needs to be evaluated
over a set of segmented images with ground truth annotations, that serves as
a training set. For that purpose, an appropriate image set, Btr, is assembled.
Then, using this training set the mean values, Irkmean, of Irk

for every k over
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all pairs of regions assigned to concepts (ci, cj), i 6= j, are estimated. These
constitute the constraints input to the optimization problem which is solved
by the genetic algorithm, as will be described in the sequel.

Spatial Constraints Verification Factor

The learnt fuzzy spatial relations, which are obtained as described in Sec-
tion 5.4, serve as constraints denoting the “allowed” spatial topology of the
supported concepts. In this section, the exploitation of these constraints is
detailed. In particular, let IS (gij , gpq) be defined as a function that receives
values in the interval [0, 1] and which returns the degree to which the spatial
constraint between the gij , gpq concept to region mappings is satisfied. To
calculate this value the following procedure is followed: Initially, a normalized
euclidean distance d(gij , gpq) is calculated based on the following equation:

d(gij , gpq) =

√∑8
k=1(Irkmean(cj , cq)− Irk

(si, sp))2√
8

, (19)

which receives values in the interval [0, 1]. The function IS (gij , gpq) is then
defined as:

IS (gij , gpq) = 1− d(gij , gpq) (20)

Implementation of Genetic Algorithm

As already described, the employed genetic algorithm realizes semantic image
analysis as a global optimization problem, while taking into account both
visual and spatial-related information. Under the proposed approach, each
chromosome represents a possible solution. Consequently, the number of the
genes comprising each chromosome equals the number N of the regions si

produced by the segmentation algorithm and each gene assigns a supported
concept to an image segment.

An initial population of 200 randomly generated chromosomes is employed.
An appropriate fitness function is introduced to provide a quantitative mea-
sure of each solution fitness, i.e. to determine the degree to which each inter-
pretation is plausible:

f(Q) = λ · FSnorm + (1− λ) · SCnorm , (21)

where Q denotes a particular chromosome, FSnorm refers to the degree of
low-level descriptors matching, SCnorm stands for the degree of consistency
with respect to the provided spatial knowledge, and variable λ, λε[0, 1], is
introduced to adjust the impact of FSnorm and SCnorm on the final outcome.
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Input image Initial region-concept Region-concept association
association after application of the GA

Fig. 7. Indicative region-concept association results

The value of the latter is estimated according to an optimization procedure,
as described in Section 5.4.

The values of SCnorm and FSnorm are computed as follows:

FSnorm =
∑N

i=1 IM (gij)− Imin

Imax − Imin
, SCnorm =

∑W
l=1 ISl

(gij , gpq)
W

, (22)

where IM (gij) = hC
ij , Imin =

∑N
i=1 minjIM (gij), Imax =

∑N
i=1 maxjIM (gij),

and W denotes the number of the constraints that had to be examined.
After the population initialization, new generations are iteratively pro-

duced until the optimal solution is reached. Each generation results from the
current one through the application of the following operators:

• Selection: the Tournament Selection Operator [8] with replacement is used
for selecting a pair of chromosomes from the current generation to serve
as parents for the generation of a new offspring.

• Crossover: uniform crossover with probability of 0.7 is used.
• Mutation: every gene of the processed offspring chromosome is likely to be

mutated with probability of 0.008.

To ensure that chromosomes with high fitness will contribute to the next
generation, the overlapping populations approach was adopted [17]. The above
iterative procedure continues until the diversity of the current generation is
equal to/less than 0.001 or the number of generations exceeds 50. In Fig.
7, indicative region-concept association results from the application of the
proposed approach in outdoor images are presented.

Parameter Optimization

Since the selection of the value of parameter λ (Eq. 21) is of crucial importance
in the behavior of the overall approach, its value is estimated according to a
particular methodology. This methodology is also based on the use of a GA.
Specifically, subject to the problem of concern is the computation of the value
of parameter λ that leads to the highest correct concept association rate. For
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that purpose, Concept Accuracy, CoA, is used as a quantitative performance
measure and is defined as the fraction of the number of the correctly assigned
concepts to the total number of image regions to be examined.

For optimizing parameter λ, each GA’s chromosome Q represents a pos-
sible solution, i.e. a candidate λ value. Under the proposed approach, the
number of genes of each chromosome is set equal to 5. The genes represent
the binary coded value of parameter λ assigned to the respective chromosome,
according to the following equation:

Q = [ q1 q2 ...q5 ] where

5∑

i=1

qi · 2−i = λ (23)

where qi ε {0, 1} represents the value of gene i. With respect to the cor-
responding GA’s fitness function, the latter is defined as equal to the CoA
metric already defined, where CoA is calculated over all images that are in-
cluded in a validation set Bval (similar to the set Btr defined in Section 5.4),
after applying the GA of Section 5.4 with λ =

∑5
i=1 qi · 2−i.

Regarding the GA’s implementation details, an initial population of 100
randomly generated chromosomes is employed. New generations are succes-
sively produced based on the same evolution mechanism as described in Sec-
tion 5.4. The differences are that the maximum number of generations is set
equal to 30 and the probabilities of mutation and crossover are set equal to
0.4 and 0.2, respectively.

References

1. T. Adamek, N. O’Connor, and N. Murphy. Region-based segmentation of images
using syntactic visual features. In In Proc. of Workshop on Image Analysis for
Multimedia Interactive Services, Montreux, Switzerland, April 2005.

2. G. Akrivas, G. Stamou, and S. Kollias. Semantic association of multimedia
document descriptions through fuzzy relational algebra and fuzzy reasoning.
IEEE Trans. on Systems, Man, and Cybernetics, part A, 34(2), March 2004.

3. G. Akrivas, M. Wallace, G. Andreou, G. Stamou, and S. Kollias. Context - sensi-
tive semantic query expansion. In In Proc. of the IEEE International Conference
on Artificial Intelligence Systems, Divnomorskoe, Russia, September 2002.

4. Th. Athanasiadis, V. Tzouvaras, K. Petridis, F. Precioso, Y. Avrithis, and
Y. Kompatsiaris. Using a multimedia ontology infrastructure for semantic an-
notation of multimedia content. In In Proc. of 5th International Workshop on
Knowledge Markup and Semantic Annotation, Galway, Ireland, November 2005.

5. F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider.
The Description Logic Hand-book: Theory, Implementation and Application.
Cambridge University Press, 2002.

6. S. Berretti, A. Del Bimbo, and E. Vicario. Efficient matching and indexing of
graph models in content-based retrieval. IEEE Trans. on Circuits and Systems
for Video Technology, 11(12):1089–1105, December 2001.



Knowledge Driven Segmentation and Classification 21

7. S. Beucher and F. Meyer. The Morphological Approach to Segmentation: The
Watershed Transformation. Marcel Dekker, NY, 1993.

8. D.E. Goldberg and K. Deb. A Comparative Analysis of Selection Schemes Used
in Genetic Algorithms. Urbana, 51:61801–2996, 1991.

9. L. Hollink, G. Nguyen, G. Schreiber, J. Wielemaker, B. Wielinga, and M. Wor-
ring. Adding Spatial Semantics to Image Annotations. Proc. of the 4th Int.
Workshop on Knowledge Markup and Semantic Annotation at ISWC’04, 2004.

10. MPEG ISO/IEC FDIS 15938-5 JTC1/SC29/WG11/M4242. Information tech-
nology - multimedia content description interface: Multimedia description
schemes. Technical report, October 2001.

11. G. Klir. and B. Yuan. Fuzzy Sets and Fuzzy Logic, Theory and Applications.
New Jersey, Prentice Hall, 1995.

12. J. Luo, M. Boutell, and C. Brown. Pictures are not taken in a vacuum. Signal
Processing Magazine, IEEE, 23(2):101–114, 2006.

13. B. S. Manjunath, J. R. Ohm, V. V. Vasudevan, and A. Yamada. Color and
texture descriptors. IEEE Trans. on Circuits and Systems for Video Technology,
11(6):703–715, June 2001.

14. V. Mezaris, I. Kompatsiaris, and M.G. Strintzis. Still image segmentation
tools for object-based multimedia applications. International Journal of Pattern
Recognition and Artificial Intelligence, 18(4):701–725, June 2004.

15. V. Mezaris, I. Kompatsiaris, and M.G. Strintzis. Segmentation of images and
video. Encyclopedia of Multimedia, B. Furht (Editor), Springer, 2006.

16. C. Millet, I. Bloch, P. Hede, and P.A. Moellic. Using relative spatial relationships
to improve individual region recognition. Proc. 2nd Eur. Workshop Integration
Knowledge, Semantics and Digital Media Technol, pages 119–126, 2005.

17. M. Mitchel. An Introduction to Genetic Algorithms. a Bradford Book, the MIT
Press, Cambridge, Massachusetts, 1996.

18. S. Miyamoto. Fuzzy Sets in Information Retrieval and Cluster Analysis. Kluwer
Academic Publishers, 1990.

19. O.J. Morris, M.J. Lee, and A.G. Constantinides. Graph theory for image anal-
ysis: An approach based on the shortest spanning tree. Institute of Electrical
Engineering, pt. F, 133(2):146–152, April 1986.

20. Ph. Mylonas and Y. Avrithis. Context modeling for multimedia analysis and use.
In In Proc. of 5th International and Interdisciplinary Conference on Modeling
and Using Context, Paris, France, July 2005.

21. G.T. Papadopoulos, V. Mezaris, I. Kompatsiaris, and MG Strintzis. Combining
global and local information for knowledge-assisted image analysis and classifi-
cation. EURASIP Journal on Advances in Signal Processing, 2007, 2007.

22. S. Staab and R. Studer. Handbook on ontologies, international handbooks on
information systems. Heidelberg: Springer-Verlag, 2004.

23. W3C. Rdf. http://www.w3.org/RDF/.
24. W3C. Rdf reification. http://www.w3.org/TR/rdf-schema/.
25. W3C. Owl web ontology language reference. http://www.w3.org/TR/owl-ref/,

February 2004.
26. Y. Wang, F. Makedon, J. Ford, L. Shen, and D. Goldin. Generating fuzzy se-

mantic metadata describing spatial relations from images using the R-histogram.
Digital Libraries, Proc. of ACM/IEEE Conf. on, pages 202–211, 2004.


